Поиск по сайту Поиск

Разработка новых полупроводников с помощью нейросетей

Поиск и исследование новых химических соединений с большим числом неизвестных свойств во многом опирается на вычислительные методы. Применение подобных открытий способно помочь в решении многих задач, в первую очередь — возрастающих экологических проблем и разработки новых лекарств. В этой статье мы расскажем, как машинное обучение используется при создании новых полупроводниковых материалов.

Отправной точкой современной физической электрохимии можно считать 1986 год, когда инженеры IBM обнаружили низкотемпературную сверхпроводимость у некоторых керамических соединений. Стало понятно, что синтетические материалы при определённых условиях ведут себя необычно: меняют температуру плавления, проявляют сверхпроводимость, электронные свойства полупроводников и изоляторов. Однако, существование таких материалов (особенно, в практическом диапазоне температур и давлений) — большая редкость, поскольку основано на удачном сочетании многих тысяч физико-химических параметров.

Традиционно для поиска новых частиц используются два метода: теория функционала плотности (Density Functional Theory, DFT) и предсказание кристаллической структуры (Crystal Structure Prediction, CSP). Первый применяется для расчёта электронного строения молекул, а второй — для прогнозирования параметров кристаллической решётки вещества.

Не так давно появился новый класс методов, основанный на алгоритмах машинного обучения. Модели создаются с помощью данных экспериментальных наблюдений DFT, таких, как OQMD, Materials Project и AFLOWlib, и могут быть нацелены на прогнозирование химических пространств для материалов с благоприятными свойствами. 

Несмотря на эффективность этих разработок, у них есть довольно существенный недостаток: они часто предсказывают химический состав соединения, не давая никакой информации о его кристаллической структуре. А знание расположения атомов в кристаллической решётке — необходимое условие для дальнейших вычислений и расчётов. Поэтому важно найти методы, позволяющие получить эту информацию.

Чтобы решить эту проблему, группа исследователей объединила две модели машинного обучения: первая прогнозирует свойства материалов на основе их химического состава, а вторая — термодинамическую стабильность (энтальпию) и ширину запрещённой зоны с помощью метода минимальных скачков (Minima Hopping Method, MHM). Последняя использует в качестве входных данных химический состав соединения из первой модели и оптимизирует потенциальную энергию. 

Этот подход применяется для прогнозирования класса тройных соединений с составом X4Y2Z, которые термодинамически стабильны и имеют запрещённые зоны от 0,3 до 1,8 эВ. 

Методы

Модели машинного обучения

Нейросети состоят из трёх компонент: обучающая выборка, её тензорное представление и алгоритм обучения. Энергия запрещённой зоны определяется с помощью иерархической модели, основанной на деревьях решений; а энтальпия – с помощью алгоритма «случайный лес». Обучающие данные взяты из открытых наборов OQMD, Materials Project и AFLOWlib.

Определение структуры

Для исследования структуры элементов используется метод минимальных скачков (MHM), который прогнозирует потенциальную энергию с помощью информации о химическом составе. Для преодоления энергетических барьеров применяется метод классической молекулярной динамики (МД), а вслед за ним — оптимизация локальной энергии. Выравнивание начальных скоростей МД происходит по принципу Бэлла-Эванса-Поляни.

Формирование энтальпии и электронной структуры

Обучающие данные генерируются из экспериментов DFT, расчёты которых выполнены с использованием пакета VASP*. Допустимые значения ширины запрещённой зоны основаны на функционале Perdew-Burke-Ernzerhof (PBE), который может выдавать неточные значения, но хорошо воспроизводит общую корреляцию в отношении химического состава различных материалов. Поэтому ошибка в этом случае является систематической и соответствует постоянному сдвигу значений запрещённой зоны. 


*Пакет VASP использует графические карты и успешно протестирован на серверах с GPU NVIDIA Tesla V100 от REG.RU.


Для анализа химической связи используется заселённость перекрывания кристаллических орбиталей (Crystal Orbital Overlap Population, COOP), которая характеризует связывание и антисвязывание электронной плотности состояний. 

Результаты

Поиск новых полупроводников

Первоначально авторы исследования пытались найти новые полупроводниковые материалы, полагаясь на то, что все прогнозируемые моделями ML соединения являются стабильными. Одно из них — Ba2As2S5. Используемый принцип поиска состоял в следующем:

  1. Необходимо оценить все композиции Ba-As-S менее чем с 12 атомами на один элемент, чтобы обнаружить другие потенциально стабильные материалы.
  2. Если обнаруживается другая область стабильных соединений, то система Ba-As-S оценивается с помощью модели, определяющей ширину запрещённой зоны. В данном случае модель спрогнозировала ширину примерно 1 эВ.

Прогнозы исследователей указывают на то, что система Ba-As-S содержит многообещающие, но ещё не обнаруженные полупроводниковые материалы.

Далее авторы приступили к уточнению списка материалов-кандидатов. Ba2As2S5 — уже известное соединение, которого, однако, не было в обучающей выборке. Но с другой стороны, не существует экспериментальных доказательств наличия тройного соединения вблизи диаграммы состояний Ba- и As-. Поэтому составляется первый список кандидатов, в котором перечисляются композиции, соответствующие обычным степеням окисления Ba2+, As3– и S2–. Наименьшими возможными формульными единицами в этом списке будут Ba4As2S и Ba5As2S2 (7 и 9 атомов).

После этой первоначальной оценки исследуются новые комбинации. При этом заменяются компоненты в X4Y2Z и X5Y2Z2, где X = {Mg, Ca, Sr, Ba}, Y = {P, As, Sb, Bi} и Z = {O, S, Se , Te}, то есть 64 композиции. Для каждого соединения оценивается минимальная ширина запрещённой зоны и выбираются кандидаты с наименьшей энергией.

Чтобы оценить энтальпию, можно положиться на фазовую стабильность DFT и построить треугольники Гиббса для каждой из систем X-Y-Z. Треугольники для Ba-As-S можно увидеть на рисунке:

(а) стабильность и (b) ширина запрещенной зоны различных комбинаций системы Ba-As-S, спрогнозированные с помощью моделей ML; (с) предполагаемые состояния, полученные в результате моделирования. Синие и оранжевые кружки — термодинамически стабильные и нестабильные фазы соответственно.

В результате исследований авторы обнаружили, что либо X4Y2Z, либо X5Y2Z2, а в некоторых случаях даже обе композиции прогнозируются как термодинамически стабильные. Исключениями являются Ba-Bi-S, Ba-Bi-Se, Ba-Sb-S, Ca-Bi-S, Ca-Bi-Se, Ca-Sb-S, Sr-Bi-S, Sr-Bi-Se, Sr-Sb-S и все магнийсодержащие соединения, Mg-Y-Z. Следовательно, фазы, в которых элементы Y и Z находятся на расстоянии двух и более периодов, имеют тенденцию к нестабильности. При этом соединения X4Y2Z более стабильны, чем X5Y2Z2, поэтому в дальнейшем мы сосредоточимся на фазовых характеристиках только для них.

Энергетические свойства

Диапазон полученных значений ширины запрещённой зоны представляет особый интерес для фотоэлектрических и термоэлектрических явлений в полупроводниках. 

Чтобы оценить, насколько хорошо в соединениях X4Y2Z проявляются фотоэлектрические свойства, авторы вычислили их спектры поглощения и сравнили с солнечным спектром. На рисунке ниже показана мнимая часть частотно-зависимой диэлектрической функции, рассчитываемой на сетке 6×6×6 точек.

Спектры поглощений соединений X4Y2Z. Мнимая часть диэлектрической функции показана относительно энергии солнечного спектрального излучения

Как и ожидалось, у соединений с наилучшими характеристиками поглощения оказались самые низкие значения энергии запрещённых зон. Наиболее подходящие кандидаты — X4Y2Te и X4Sb2Se с краевым значением поглощения в диапазоне 1,2-2,0 эВ и высоким пиковым значением около 1,8-3,0 эВ. Следовательно, эти материалы хорошо подходят для фотоэлектрических применений.

Перспективными кандидатами с термоэлектрическими свойствами являются Zintl-фазы. Из-за своей химической и структурной сложности Zintl-соединения обладают низкой теплопроводностью и высокими значениями мощности. На рисунке ниже можно увидеть локальные экстремумы в зонах валентности и проводимости для соединения Ba2As2S, которые вместе с вышеперечисленными свойствами делают такие материалы подходящими для термоэлектрических источников энергии.

Электронная структура Ba2As2S. Окраска полос соответствует атомным проекциям, справа показана заселённость перекрывания кристаллических орбиталей.

Электронная структура Ba2As2S имеет симметрию I-42d и может быть отрегулирована путём химического замещения. Это и приводит к тому, что значения энергии запрещённой зоны становятся подходящими для широкого спектра энергетических применений.

Заключение

Химикам часто приходится анализировать базы данных и отбирать из них наиболее перспективные и стабильные химические структуры. Алгоритмы машинного обучения могут помочь визуализировать химические пространства и автоматизировать этот процесс. В результате их работы исследователи увидят распределение новых, неизученных соединений относительно существующих и исследуют их перспективные свойства. Так, например, фармацевты смогут быстрее находить и создавать медикаменты, а специалисты по хемоинформатике — моделировать материалы с новыми свойствами.

Подборка для вдохновения: бизнес-идеи 2022

Наверняка вы знаете, что для начала своего дела нужно составить бизнес-план, создать сайт, зарегистрировать домен, компанию и много другое. Но...
Read More

Итоги 2021 года: Cloud VPS на Windows, VIP-поддержка хостинга и искусство в дата-центре

Ещё один год приближается к финишной прямой — 2021 выдался действительно богатым на события для нашей компании. Поэтому редакция блога...
Read More

Самые читаемые посты в блоге за 2021: программирование, интересные факты и загадки

Компания REG.RU начинает подводить итоги уходящего года. Все 365 дней мы внимательно следили за тем, какие статьи вызывают у читателей...
Read More

Лучшие таск-сервисы для организации командной работы

Грамотное планирование — неотъемлемая частью нашей жизни, будь то ремонт квартиры, организация дня рождения или совместная работа над проектом с...
Read More

Жизненный цикл домена: регистрация, продление и новые владельцы

Спорим, вы догадывались, что зарегистрированный домен будет с вами не всегда? Многие знают, что сделка с регистратором подтверждает возможность использования...
Read More

Что такое веб-портфолио и как его создать

Портфолио — собрание выполненных работ, проектов и других документов, которые демонстрируют ваш профессионализм и опыт. И, если раньше портфолио представляло...
Read More

Чек-лист для проверки сайта: распознаём фишинговые страницы «на глаз»

Согласно статистике 45% россиян столкнулись с фишинговыми сайтами в 2021 году. Поэтому сегодня, в преддверии покупок подарков к приближающимся праздникам,...
Read More

Всем игрокам подготовиться: 5 игр для изучения программирования

Самостоятельное изучение программирования может оказаться не только сложным, но и проблематичным: как не потеряться в огромном количестве учебников и документации?...
Read More

«Доменный брокер» или как REG.RU договаривается о покупке за вас

Давайте представим, что вы решили зарегистрировать домен, но оказалось, что он уже занят другим администратором или владельцем. Казалось бы, что...
Read More

Google Workspace: Gmail, видеозвонки, календарь и многое другое

Хотите выстроить работу в режиме удалёнки? Это не так уж и сложно. Организовать онлайн-офис вам помогут digital-инструменты, например, Google Workspace,...
Read More