Поиск по сайту Поиск

Взлом капчи за 0.05 секунд с помощью Машинного Обучения

Оказывается, нейросети уже давно могут «притворяться» людьми — рассказываем про новую модель генеративно-состязательной сети (GAN), которая распознаёт системы CAPTCHA на 32 посещаемых веб-сайтах.

Автор: Roberto Iriondo, Machine Learning Department of Carnegie Mellon University

ДИСКЛЕЙМЕР

Текст данной статьи приведен исключительно в образовательных целях для информирования пользователей о возможных уязвимостях при разработке сайтов. Информация предоставляется в целях противодействия эксплуатации уязвимостей. Редакция сайта не поддерживает никакие виды противозаконной деятельности в сети Интернет.

Никто не любит капчи (в смысле, никто из людей, ведь у ботов нет эмоций) — надоедливые картинки с трудно читаемым текстом, который вы должны ввести для доступа к чему-либо в интернете. CAPTCHA (Completely Automated Public Turing tests to tell Computers and Humans Apart) разработана для того, чтобы автоматические программы не могли злонамеренно использовать онлайн-контент (заполнять формы, запрашивать доступ к закрытым файлам, многократно заходить на один и тот же сайт и т. д.). Она должна убедиться, что вы человек, а не бот. Тем не менее, в прошлом были попытки доказать несовершенство систем CAPTCHA. Но ни одна из них не была настолько же точной и быстрой, как алгоритм машинного обучения, предложенный группой исследователей из университета Ланкастера, Северо-Западного университета и Пекинского университета.

Схема алгоритма:

https://cdn-images-1.medium.com/max/1600/1*MMmvdvHeRZ4qkWb4Q1O_Ig.png
Исследователи используют небольшой набор несинтезированных капч для обучения синтезатора CAPTCHA. Синтезатор (1) используется для генерации синтетических CAPTCHA (2), которые применяются для обучения базового решателя (base solver) (3). Base solver затем совершенствуется для создания точно настроенного решателя (fine-tuned solver) несинтезированных капч.

Одним из первых известных людей, которые продемонстрировали уязвимость CAPTCHA, был Эдриан Роузброк. В своей книге “Deep Learning for Computer Vision with Python” Эдриан рассказывает, как он обошёл системы CAPTCHA на сайте E-ZPass New York. Для обучения своей глубокой модели он использовал большой набор изображений с примерами CAPTCHA.

Основное отличие решения Адриана от подхода учёных из Ланкастера, Северо-Западного университета и Пекина — последние не использовали набор данных с примерами, а синтезировали CAPTCHA с помощью генеративно-состязательной сети (GAN). Почти вся обучающая выборка состояла из сгенерированных капч, и лишь небольшая часть — из реальных.

Генеративно-состязательные сети, представленные Яном Гудфеллоу вместе с другими учёными — это глубокие архитектуры, состоящие из двух нейросетей. Эти сети «соревнуются» друг с другом в игре с нулевой суммой (zero-sum game) и синтезируют образцы, близкие к подлинным. Это может быть очень полезно в случае, когда модель не имеет доступа к большому набору данных.

Исследователи оценили свой подход с помощью 33 текстовых схем CAPTCHA, 11 из которых в настоящее время используют 32 самых популярных веб-сайта по данным Alexa. Туда входят схемы Google, Microsoft, eBay, Wikipedia, Baidu и многие другие. Модели, создаваемой для работы с этими системами, понадобилось всего 500 реальных капч, в то время как другим (в том числе модели Эдриана) требовались миллионы примеров.

Сеть GAN инициализируется с учётом параметров безопасности капчи, показанных на рисунке:

https://cdn-images-1.medium.com/max/1600/1*taEvZ84grhbz__3W2lraNg.png

Затем она генерирует партию CAPTCHA, чтобы обучить синтезатор с помощью 500 реальных изображений из различных схем капч:

https://cdn-images-1.medium.com/max/1600/1*pid-EncGvVJSIwWEbyGMAA.png
Список текстовых схем капчи, используемых в качестве обучающих данных для синтезатора и тестовых данных для решателя

Исследователи использовали 20 тыс. капч для обучения модели Preprocessing и 200 тыс. сгенерированных капч для обучения базового решателя.

Прототип создан с помощью Python, модель Preprocessing построена в приложении Pix2Pix, которое реализовано с помощью TensorFlow. Точно настроенный решатель сделан с помощью Keras.

https://cdn-images-1.medium.com/max/1600/1*53gcWNgaPzISBMIerCYDVg.png
Реальные Google CAPTCHA и сгенерированные версии, созданные синтезатором CAPTCHA

После обучения GAN со сгенерированными и реальными капчами, решатель CAPTCHA использовался для атаки на системы защиты таких сайтов как Megaupload, Blizzard, Authorize, Captcha.net, Baidu, QQ, reCaptcha, Wikipedia и т.д. Большинство капч было определено с точностью около 80%, а на сайтах Blizzard, Megaupload и Authorize.net — 100%. Этот метод оказался более точным, чем все предыдущие решения, в которых использовались большие несинтезированные наборы обучающих данных.

https://cdn-images-1.medium.com/max/1600/1*au_IruJOymcVuufVYvPUYw.png
Сравнение решателя CAPTCHA с четырьмя другими методами

Помимо увеличения точности, исследователи упоминают в статье, что их подход также оказался более эффективным и не таким дорогостоящим, как другие решения. Это первая GAN-нейросеть для распознавания капч с открытым исходным кодом — отсюда её эффективность и дешевизна.

Однако, у модели есть некоторые ограничения: например, капчи с переменным количеством символов. В текущем подходе используется фиксированное число — если его увеличить, то прототип не будет работать. Ещё модель не поддерживает многословные и фото- или видео-капчи. В теории её можно обучить так, чтобы избавиться от этих ограничений, но пока что они присутствуют.

Посещаемым веб-сайтам следует использовать более надёжные способы защиты своих систем, такие как меры по обнаружению ботов, диагностика кибербезопасности и аналитика. Следует также поддерживать отслеживание местоположения устройства, его тип, используемый браузер и т.д., поскольку теперь сайты стали ещё более лёгкой мишенью для атаки.

Ссылка на оригинальную статью на портале medium.com.

С какого возраста можно открыть ИП и как это правильно сделать

Подросток может заниматься бизнесом, но с учетом важных условий, прописанных в законе. Разбираемся, как несовершеннолетнему стать предпринимателем, что такое эмансипация,...
Read More

Коносамент — главный документ морских грузоперевозок

Ежедневно по морю перевозят десятки, а то и сотни тысяч контейнеров с грузами. Чтобы партия товара, изготовленная, например, в Китае,...
Read More

Лучшая система налогообложения для вашего бизнеса. Как выбрать?

Одна из главных головных болей любого предпринимателя — уплата налогов. И дело даже не в том, что кому-то не хочется...
Read More

Фискальный чек — что это, зачем нужен и что будет, если его не выдать

Кто-то выкидывает их сразу возле кассы, кто-то тщательно собирает, чтобы потом проанализировать траты за месяц, кто-то даже не забирает их...
Read More

Расчет заработной платы по окладу в 2024 году: как понять, сколько заработал сотрудник

Вряд ли будет преувеличением сказать, что для многих самое важное в работе — это цифры в сообщении о начислении зарплаты....
Read More

Общество с ограниченной ответственностью: что это, как работает, как открыть ООО

При создании бизнеса предпринимателям важно принимать обоснованные решения, которые помогут минимизировать финансовые риски. Разберемся, как понимание особенностей ООО обеспечивает защиту...
Read More

Как собирать и обрабатывать в облаке данные о 350 млн товаров в день: кейс Sellematics

В кейсе делимся опытом масштабирования в облаке сервиса аналитики и исследований для eCommerce — Sellematics. (далее…)
Read More

Открываем пункт выдачи заказов Яндекс.Маркета с нуля

Пункты выдачи маркетплейсов ― это неплохой бизнес, если все правильно рассчитать и открывать их в нужное время в нужном месте....
Read More

Накладная: для чего нужна и как правильно составить

Составлять накладную несложно. Этот первичный документ подтверждает сделку, упрощает взаимодействие между контрагентами и помогает избежать ошибок в расчетах. (далее…)
Read More

Как развернуть ИТ-инфраструктуру для ML-задач: опыт РБК

Рассказываем, как мы помогли команде РБК автоматизировать процесс тегирования материалов редакции с помощью нейросети на облачных серверах Рег.ру с GPU. ...
Read More