Поиск по сайту Поиск

Интерпретация строения мозга с помощью рекуррентных нейронных сетей

Коннектомика — область науки, изучающая работу мозга с помощью анализа и построения карты нейронных связей. Она помогает лучше понять сложную структуру нервной системы организма. Из этой статьи вы узнаете, как исследователи из Google AI и Института нейробиологии Макса Планка используют новый тип рекуррентной нейросети, которая на порядок повышает точность обработки данных коннектомики.

Чтобы разобраться в работе биологических нейронных сетей, необходимо визуализировать мозговую ткань в 3D с разрешением порядка нанометров. Обычно это делается с помощью электронных микроскопов. Затем полученные изображения анализируются для отслеживания нейритов и идентификации отдельных синаптических соединений. 

Разрешение снимков очень высокое, из-за чего кубический миллиметр мозговой ткани может занимать более 1000 терабайт! Поэтому основная проблема составления карты мозга заключается не в получении данных коннектомики, а в автоматизации их интерпретации.

Сегментация трёхмерного изображения

Отслеживание нейритов на снимках с электронного микроскопа — пример сегментации изображений. Современные алгоритмы, автоматизирующие этот процесс, разделяют задачу на два этапа. Сначала выполняется поиск границ между нейритами с помощью классификатора или детектора границ. Для этого используется информация об интенсивности вокселов. Затем вокселы, которые не разделены границей, группируются в отдельные сегменты посредством методов водораздела или разреза графа.

В 2015 году компания Google AI начала эксперименты с альтернативным подходом, который объединяет в себе эти два шага. Они добавили к входному классификатору ещё один канал с картой прогнозируемых объектов, что привело к созданию рекуррентной модели.

Алгоритм анализирует участок изображения и итеративно заполняет отдельные области с помощью свёрточной нейросети. Сеть прогнозирует, какие вокселы являются частью изначально обнаруженного сегмента. С 2015 года исследователи проделали огромную работу для того, чтобы применить этот подход к наборам данных коннектомики и тщательно оценить его точность. Реализация получила название “Flood-Filling Network” (FFN).

Пример работы flood-filling-нейросети, сегментирующей объект в 2D. Жёлтая точка — центр текущей области фокуса. Алгоритм итеративно исследует изображение и расширяет сегментированную область (синего цвета).

Flood-filling network и сегментация

FFN имеет два входных канала: один для 3D-изображений, другой — для текущего состояния карты прогнозируемых объектов (Predicted Object Map, POM). POM использует вещественный диапазон значений от 0 до 1 и кодирует оценку принадлежности воксела к сегментируемому объекту. На каждой итерации данные POM обновляются для всех вокселов в текущем поле зрения нейросети, а затем снова отправляются на вход.

Перед началом сегментации нового объекта поле зрения сети центрируется на исходном элементе. Значение POM для него устанавливается равным 0.95, а для всех остальных вокселов — 0.05. Веса смещаются к 1 и 0, чтобы избежать переобучения.

После каждой итерации значения весов корректируются с помощью стохастического градиентного спуска с кросс-энтропийными (логистическими) потерями для всех вокселов. Порядок перемещений по сегментам при этом случайный.

Архитектура нейросети

В основе FFN лежит 19-слойная 3D-CNN (трёхмерная свёрточная нейросеть) со слоями без дополнения (SAME) — это значит, что для каждого слоя вход и выход имеют одинаковый размер. Во всех слоях используется функция активации ReLU, ядра 3x3x3 и карта признаков размером 32 (кроме последнего слоя). Последний слой выполняет свёртку по вокселам, объединяющую входные данные от всех карт признаков (размер ядра 1x1x1).

Архитектура flood-filling нейросети.

Сегментация

Обобщённый процесс сегментации состоит из трёх шагов:

  1. Выравнивание: на этом этапе выполняется обработка исходных изображений методом кросс-корреляции соседних трёхмерных секций. Это помогает найти неровности и сдвиги в структурах. Исследователи повысили точность процесса, используя алгоритм упругого выравнивания.
  2. Сегментация клеток: части снимков, соответствующие внутренностям клеток, сегментируются с помощью FNN. Вокселы предварительно размечаются классификатором по типам тканей.
  3. Сегментация скоплений клеток: поле зрения FNN ограничено вокселами, которые помечены как участки клеток. Поскольку процесс их обработки итеративно выполняется по отдельным сегментам, нейросеть может упустить места соединений клеток и создать разрывы. Чтобы избежать этого, проводится дополнительная сегментация и слияние секций по всему объему исходных данных.

Измерение точности

Google AI совместно с учёными из Института когнитивистики и нейробиологии Общества Макса Планка разработали новую метрику точности, которую назвали «ожидаемая длина пробега» (Expected Run Length, ERL). Её название пришло из вопроса, на который исследователи искали ответ: «Как далеко можно проследить нейрон из произвольной заданной точки на трёхмерном изображении, прежде чем допустить ошибку?» 

Эта метрика — частный пример средней наработки на отказ, но в этом случае измеряется длина пространства между ошибками, а не время. ERL связывает отслеживаемый путь с частотой отдельных ошибок, допущенных алгоритмом. Для исследователей это играет важную роль, поскольку конкретные числовые значения ERL могут указывать на биологически значимые величины, такие как средняя длина пути нейронов в разных частях нервной системы.

Синяя линия — прогресс ожидаемой длины пробега. Красная линия показывает прогресс скорости слияния (merge rate). Эта метрика измеряет частоту, с которой два отдельных нейрита ошибочно прослеживаются как один объект (чем ниже линия, тем лучше).

Как выглядит мозг певчих птиц

Исследователи применили метрику ERL в процессе обработки участка мозга зебровой амадины. Объём составляет 1 млн кубических микрон.

Отслеживание нейрита в мозгу певчей птицы

Учёные сегментировали каждый нейрон в небольшой части мозга зебровой амадины с помощью нейросети. Это действительно завораживает:

Работа FNN пока ещё требует дополнительного исправления ошибок вручную. Но автоматизация вносит существенный вклад: сотрудники Института Макса Планка теперь могут глубже изучать мозг певчих птиц. Это приблизит их к пониманию того, как именно зебровые амадины поют свои песни.

Глубже в разум

Компания Google AI собирается совершенствовать технологию реконструкции коннектомики, чтобы полностью автоматизировать этот процесс. Также она открыла исходный код нейросети и ПО для визуализации 3D-изображений с помощью WebGL. 

А какие тайны мозга интересуют вас? Может, вы тоже хотите знать, почему поют птицы, или что говорит ваш кот? Делитесь интригующими вопросами в комментариях!

С оригинальными материалами можно ознакомиться в блоге Google AI и на сайте biorxiv.org.

Локальное ранжирование в Google: как проверять эффективность продвижения сайта в разных регионах

Чтобы убедиться, что сайт правильно продвигается, необходимо понимать, как именно он ранжируется в разных региональных сегментах интернета. Команда Links.Sape рассказывает...
Read More

Как совместить карьеру и семью: интервью с сотрудником REG.RU

Режим самоизоляции 2020 года разделил нашу жизнь на «до» и «после». И хоть прошло больше двух лет, многие IT-специалисты так...
Read More

Подборка выпусков подкаста «640 килобайт» для IT-специалистов

Удивительно, но в эпоху стримов, тиктоков и виртуальной реальности подкасты переживают вторую волну популярности. Всё потому, что у аудиоконтента есть...
Read More

Близнецы или двойняшки: что такое тайпо-домены

В прошлом месяце мы обещали подготовить статью про тайпо-домены. Сказано — сделано. Сегодня разберемся, что это такое и зачем регистрировать...
Read More

Необычная среда разработки Jupyter Notebook

Если вы хотите писать на Python или работать с Data Science, обратите внимание на интерактивную среду разработки с «живым» кодом...
Read More

Как определить фишинг и не попасться на крючок

Праздник к нам приходит, а вместе с ним и два месяца распродаж: 11.11 и «черные» дни недели. К сожалению, также...
Read More

Публичное, частное или гибридное: рассказываем, какое облако лучше подойдет вашему бизнесу

Причина популярности облачных технологий в бизнесе — не только безопасность данных и сокращение time-to-market (времени вывода на рынок). Облака позволяют...
Read More

Осенний рецепт для создания крутого сайта

Ноябрь — прекрасное время не только для тыквенных пирогов и облепихового чая, но и для запуска сайтов. Пока ваши клиенты...
Read More

Что такое Python-хостинг и какой тип услуги выбрать

В статье мы расскажем о том, что такое Python и как выбрать хостинг для проектов на этом языке. (далее…)
Read More

Элиза, Пэри и Алиса: история и эволюция чат-ботов

За последнее десятилетие чат-боты незаметно влились в нашу жизнь и стали ее неотъемлемой частью. Siri поможет найти ответ на любой...
Read More