Поиск по сайту Поиск

Danger, danger, high performance: ускоряем Python по максимуму

Разрушаем мифы и рассказываем, как достичь высокой производительности в программах на Python.

Вот уже более десятка лет Python широко используется как разработчиками, так и исследователями. За счёт своей эффективности и простоты он стал популярен в научных вычислениях и машинном обучении. Однако базовые функции Python — однопоточные. То есть программы на Python не могут одновременно использовать множество процессорных ядер. Как же тогда достичь высокой производительности в анализе данных и машинном обучении на Python?

Язык Python изначально предназначался для введения динамической типизации и предсказуемого, потокобезопасного поведения вместо сложного управления статическими типами и потоковыми примитивами. Для этого в нём используется глобальная блокировка интерпретатора (Global Interpreter Lock, GIL), которая ограничивает выполнение операций только одним потоком за раз. За последнее десятилетие было представлено много реализаций параллельных вычислений для Python, но они не обеспечивали настоящий параллелизм. Означает ли это, что Python — непроизводительный язык? Давайте разберёмся.

Фундаментальные конструкции базового языка для циклов и других асинхронных или параллельных вызовов подчиняются однопоточному GIL. Даже такое определение списка — [x*x for x in range(0,10)]  — всегда будет однопоточным. Хотя в языке существует библиотека поддержки потоков, которая многих вводит в заблуждение, на самом деле все операции выполняются в рамках GIL. Почему же в таком выразительном языке присутствуют эти правила?

Причина тому — уровень абстракций, принятый языковой концепцией. В рамках самого Python достижима лишь многопроцессность, то есть параллелизм на уровне отдельных рабочих процессов. Тем самым оказываются потеряны некоторые важные преимущества многопоточности, такие как общий доступ к памяти родительского процесса и сниженные накладные расходы на коммуникацию. Обеспечение многопоточности в Python достижимо посредством «склейки» управляющего Python-кода с библиотеками на других языках, например, на Си. Так, интерфейсы вроде  ctypes или cffi повсеместно используются в популярных пакетах NumPy и SciPy для подключения внешних производительных библиотек со встроенной многопоточностью или даже с поддержкой GPU (например, CUBLAS).

Существует ряд других техник повышения производительности Python-программ. Например, доступны следующие фреймворки:

Numba: допускает JIT-компиляцию кода (Just-in-time), а также может запускать Python-совместимый код на основе LLVM (Low Level Virtual Machine).

Cython: предоставляет Python-подобный синтаксис со скомпилированными модулями, которые могут использовать аппаратную векторизацию при компиляции в C.

numexpr: позволяет использовать компиляторы и продвинутую векторизацию для символьных вычислений.

Все они избегают GIL-кода различными способами, сохраняя первоначальную концепцию языка.

Рассмотрим общий пример одной из наиболее распространённых конструкций, к которой мы бы хотели применить параллелизм — цикл for. Посмотрим на фрагмент:

Здесь мы проверяем список list_of_items и возвращаем все числа из него, которые меньше 50.

Запуск этого кода даёт следующий результат:

Python обрабатывает список последовательно с помощью одного потока, поскольку код написан на базовом чистом языке. Здесь мы не наблюдаем никакого параллелизма. Такие конструкции — хорошие кандидаты для фреймворка Numba. Он использует декоратор с символом @, чтобы помечать функции для JIT-компиляции:

Теперь мы получим:

Видно, что производительность повысилась почти вдвое. Дело в том, что исходный код Python написан в примитивах и типах данных, которые могут быть легко скомпилированы и векторизованы для CPU. И первое, на что стоит обратить внимание — это списки. Они бывают очень «тяжёлыми» из-за слабой типизации и встроенного аллокатора. Но если мы посмотрим на типы данных, содержащиеся в random_list, то увидим, что они все целочисленные. Благодаря этой согласованности типов JIT-компилятор Numba может векторизовать цикл.

Если список содержит разнотипные элементы (например, символы и числа), то выполнение кода завершится ошибкой TypeError. Кроме того, если функция содержит операции для смешанных типов данных, Numba не сможет создать высокопроизводительный JIT-код и обратится к объектному коду Python.

Урок здесь заключается в том, что достижение параллелизма в Python зависит от исходного кода. Чистота типов и использование векторизуемых структур данных позволяют Numba распараллеливать код с помощью простого декоратора. Наиболее осторожно следует обращаться со словарями, поскольку обычно они плохо поддаются векторизации. То же относится к генераторам и списковым включениям. Реорганизация их в списки, множества или массивы может облегчить ситуацию.

Гораздо проще достичь параллелизма в числовой и символьной арифметике. NumPy и SciPy отлично справляются с пересылкой вычислений вне GIL-кода на низкоуровневый код С и среду выполнения CUBLAS. Возьмём, к примеру, символьное выражение NumPy ((2 * a + 3 * b) / b):

Выражение многократно использует однопоточный интерпретатор Python из-за структуры библиотеки NumPy. Каждый return из Numpy передаётся в C и затем обратно возвращается на уровень Python.  Потом объект Python направляется к каждому последовательному вызову для повторной отправки на C. Эти прыжки туда-сюда создают так называемое «узкое место» в вычислениях. Поэтому, если вы хотите посчитать линейную алгебру, которую тяжело или невозможно описать в Numpy или SciPy, лучшим вариантом будет numexpr:

Как же numexpr достигает почти четырёхкратного ускорения? Он использует символьное представление вычислений для генерации кода, которое работает на уровне функций доступной библиотеки BLAS. В случае BLAS для CPU, код этих функций будет наилучшим образом векторизован; в случае CUBLAS — вычислительную нагрузку примут ядра графического процессора. Так все вычисления остаются в виде низкоуровневого кода до их завершения и возвращения результата обратно на уровень Python. Этот метод также позволяет избежать многократных обращений через интерпретатор Python, сокращая число однопоточных участков кода, а также обеспечивает краткий синтаксис.

Экосистема Python предоставляет много хороших вариантов повышения производительности. Чтобы овладеть ими, важно понимать используемые вами инструменты и ограничения, которые они накладывают. Хотя Python использует GIL для реализации своей языковой концепции, его принципиальную однопоточность легко обойти с помощью правильных методик и эффективного кода.

С оригинальной статьёй можно ознакомиться на сайте techdecoded.intel.io.

Локальное ранжирование в Google: как проверять эффективность продвижения сайта в разных регионах

Чтобы убедиться, что сайт правильно продвигается, необходимо понимать, как именно он ранжируется в разных региональных сегментах интернета. Команда Links.Sape рассказывает...
Read More

Как совместить карьеру и семью: интервью с сотрудником REG.RU

Режим самоизоляции 2020 года разделил нашу жизнь на «до» и «после». И хоть прошло больше двух лет, многие IT-специалисты так...
Read More

Подборка выпусков подкаста «640 килобайт» для IT-специалистов

Удивительно, но в эпоху стримов, тиктоков и виртуальной реальности подкасты переживают вторую волну популярности. Всё потому, что у аудиоконтента есть...
Read More

Близнецы или двойняшки: что такое тайпо-домены

В прошлом месяце мы обещали подготовить статью про тайпо-домены. Сказано — сделано. Сегодня разберемся, что это такое и зачем регистрировать...
Read More

Необычная среда разработки Jupyter Notebook

Если вы хотите писать на Python или работать с Data Science, обратите внимание на интерактивную среду разработки с «живым» кодом...
Read More

Как определить фишинг и не попасться на крючок

Праздник к нам приходит, а вместе с ним и два месяца распродаж: 11.11 и «черные» дни недели. К сожалению, также...
Read More

Публичное, частное или гибридное: рассказываем, какое облако лучше подойдет вашему бизнесу

Причина популярности облачных технологий в бизнесе — не только безопасность данных и сокращение time-to-market (времени вывода на рынок). Облака позволяют...
Read More

Осенний рецепт для создания крутого сайта

Ноябрь — прекрасное время не только для тыквенных пирогов и облепихового чая, но и для запуска сайтов. Пока ваши клиенты...
Read More

Что такое Python-хостинг и какой тип услуги выбрать

В статье мы расскажем о том, что такое Python и как выбрать хостинг для проектов на этом языке. (далее…)
Read More

Элиза, Пэри и Алиса: история и эволюция чат-ботов

За последнее десятилетие чат-боты незаметно влились в нашу жизнь и стали ее неотъемлемой частью. Siri поможет найти ответ на любой...
Read More